
Multiagent Reinforcement Learning in Competitive
Environments

Athith Gobinathan
Department of Computer Science

Columbia University
New York, NY 10027

asg2278@columbia.edu

Mike Qu
Department of Computer Science

Columbia University
New York, NY 10027

zq2234@columbia.edu

Acknowledgments

The code for all experiments and environments described in this paper is available at https://
github.com/mikequ1/MultiagentRL.

1 Introduction

In many real-world scenarios, decision-making involves interactions among various self-interested
agents, each of whom may have competing or cooperating interests. Although game theory has
long offered a robust framework to analyze these interactions through equilibrium strategies, a
comprehensive and accurate understanding of the underlying environment model is required to
generate these insights, which could be infeasible to obtain in complex or partially observable
domains. In contrast, Multi-agent Reinforcement Learning (MARL) provides a powerful alternative
by allowing agents to learn the environment through exploration and exploitation. Through this
process, agents may be incentivized to cooperate, compete, or pursue a mixture of both, allowing
MARL to model a wide-range of complex behaviors and phenomena.

1.1 Problem Formulation

In this project, we investigate the performance of four widely used multi-agent reinforcement
learning (MARL) algorithms—CDQN, IDQN, MAPPO, and MADDPG—across two contrasting
environments: a competitive two-agent economic game (the sequential bargaining environment) and
a complex multi-agent card game (Monopoly Deal), both of which we build from scratch. We then
evaluate these methods through both theoretical reasoning and empirical experiments, focusing on
their relative strengths and limitations in terms of accuracy, stability, and convergence. Our findings
suggest that centralized and deterministic approaches tend to outperform others in environments
where equilibrium strategies are sharp and highly sensitive to deviations.

2 Related Work and Methods

2.1 Independent Agents

One of the simplest extensions of reinforcement learning to multi-agent settings is to treat each
agent as an independent learner. Throughout the training process, each of these agents will optimize
its own policy by interacting with the environment and ignoring the presence of other competing
or cooperating agents. The behavior of these other agents will instead be treated as part of the
environment dynamics. In this project, we incorporate the Independent DQN method (IDQN), in
which each agent learns through a Deep Q-Network (DQN) (i.e. each agent i maintains a Q network

Preprint. Under review.

https://github.com/mikequ1/MultiagentRL
https://github.com/mikequ1/MultiagentRL

Q̂i(oi, ai, θi), where oi is that agent’s local observation, ai is an action taken by that agent, and θi
represents the parameters of the network).

While we focus on Independent Deep Q-Networks (IDQN) in our experiments, we begin by analyzing
the convergence properties of classical tabular Q-learning in order to highlight the core instability
introduced by multi-agent interactions. In single-agent settings, Q-learning is known to converge
under mild assumptions, owing to the contraction property of the Bellman operator. However, this
key property breaks down in multi-agent reinforcement learning. Here, each agent i no longer acts
in a stationary environment, as the transition dynamics depend not only on its own actions but also
on the actions of other agents. Formally, the marginal transition function becomes P (s′|s, ai) =∑

a∀j ̸=i
P (aj |s) · P (s′|s, ai, aj), where aj denotes the joint actions of all other agents. Since those

agents are also learning and updating their policies over time, the distribution P (a∀j ̸=i|s) is non-
stationary, resulting in time-varying transitions from the perspective of agent i. Moreover, each agent
receives only a partial observation of the environment at each timestep, i.e., the observation oi reveals
only a subset of the full global state s. This partial observability, combined with the unobservable
and evolving policies of other agents, invalidates the Markov assumption required for Q-learning
convergence.

As a result, the Q-learning update Qi(oi, ai) ← (1 − α)Qi(oi, ai) + α
(
ri + γmaxa′

i
Qi(o

′
i, a

′
i)
)

is applied using targets derived from a non-stationary and partially observed environment. The
underlying Bellman operator becomes time-varying and loses its contraction property, which is
essential for convergence in standard Q-learning. This issue is further exacerbated in our Independent
DQN (IDQN) architecture, where off-policy updates, bootstrapping, and function approximation (the
deadly triad) further amplify the instability and make divergence even more likely. [Lee et al., 2021]
[Sutton and Barto, 2018]

2.2 Centralized Agent

In order to address the non-stationarity of using independent agents, a simple solution is to directly
model the joint state and joint action of all agents in one single network. In this project, we incorporate
a centralized DQN (CDQN) that keeps track of a global Q function Q(s, ā) where s represents the
full environmenment state and ā is the joint action over all n agents, i.e. ā = (a1, a2, ..., an).

From a convergence standpoint, centralized Q-learning reformulates the multi-agent environment
as a single-agent, fully observable MDP, and therefore inherits the same convergence and stability
guarantees as standard Q-learning. However, a major limitation of fully centralized approaches is that
each agent requires access to the joint action and global state at execution time, which is unrealistic
in most applications. In the case of competitive multi-agent games, agents often operate under partial
observability and cannot access the exact states or actions of others, as agents are unwilling to reveal
their intentions, valuations, and preferences. This makes fully centralized execution impractical
outside of controlled or simulated environments.

2.3 Centralized Training, Decentralized Execution (CTDE)

To address the limitations of independent agents, who suffer from non-stationarity, and having one
centralized agent, which would be unrealistic to deploy, the Centralized Training with Decentralized
Execution is introduced [Amato, 2024]. As the name suggests, agents are trained using centralized
information, i.e. the states, actions, and rewards seen by all other agents, but are restricted to using
only their own local observations at execution time. This setup balances the sample efficiency and
stability benefits of using centralized learning with the practical need for decentralized policies in
real-world execution scenarios. Two widely-used multiagent RL frameworks, MADDPG [Lowe et al.,
2020] and MAPPO [Yu et al., 2022], which we incorporate in our experiments, are built upon this
framework.

2.3.1 Multiagent Deep Deterministic Policy Gradient (MADDPG)

Deep Deterministic Policy Gradient is an extension of Vanilla Policy Gradient (VPG), which, instead
of optimizing stochastic policy πθ(a|s) and corresponding gradient ∇θ log π(at|st, θ)Ât, optimizes
a deterministic policy µθ(s) and its policy gradient ∇θµ(s)∇aQ

µ(s, a)|a=µ(s). Intuitively, we can
see from the formula that DDPG attempts to maximize two objectives: ∇aQ

µ(s, a)
∣∣
a=µ(s)

identifies

2

how the deterministic action should change to increase the expected return (functionally similar to
the log probabilities term in VPG), and the term ∇θµ(s) propagates this gradient through the actor
network, adjusting its parameters to produce actions that yield higher Q-values (functionally similar
to the advantage term in VPG).

MADDPG further extends DDPG to multiagent environments under the CTDE framework. During
training, a centralized critic Qµ

i (s,a) is used for each agent i, which conditions on the global state
s and the joint action a = (a1, . . . , aN). Meanwhile, each agent’s actor network is updated using
the deterministic policy gradient, optimizing how its own action affects its expected return. At
execution time, the critic is discarded, and each agent selects actions using only its local observation:
ai = µi(oi).

2.3.2 Multiagent Proximal Policy Optimization (MAPPO)

Proximal Policy Optimization is another widely used policy gradient method that greatly improves the
stability over VPG by constraining policy updates to avoid large deviations from the previous policy.
While Trust Region Policy Optimization (TRPO) enforces this constraint by explicitly limiting the KL
divergence between the old and new policies to be within some threshold δ, PPO introduces a simpler
and less computationally expensive approach by applying a clipping mechanism to the policy ratio,
i.e. [min(rθ(s, a)Aθold(s, a), clip(rθ(s, a), 1 − ϵ, 1 + ϵ)Aθold(s, a)], where rθ(s, a) = πθ(a|s)

πθold
(a|s)

represents this ratio. The clipping prevents excessively large updates by limiting how much the policy
ratio can amplify the advantage, thus improving overall stability.

MAPPO is an extension of the PPO algorithm to multiagent settings under the CTDE framework.
Here, each agent maintains an independent stochastic policy πi(ai|oi) that is updated through
PPO’s clipped objective, in contrast to MADDPG’s deterministic policy µi(oi). During training, a
centralized value function Vi(s) is used to compute advantage estimates for each agent, where s is
the global state, allowing each agent to leverage global information for better advantage estimates.
At execution time, each agent acts independently by sampling from their local policy distributions
and using their own local observations.

3 Experiments and Discussion

3.1 Environment 1: 2-Player Sequential Bargaining Environment

We begin by evaluating the learning and convergence propoerties of multi-agent reinforcement
learning algorithms within a simple, 2-agent environment: the Sequential Bargaining Environment
[Rubinstein, 1982]. Rooted in economic theory, the Sequential Bargaining problem involves two
competing agents alternating offers to optimally split some finite, divisible resource (e.g. a pie).
During each round, one agent acts as the proposer and the other as the responder. The proposer
suggests a division of the resource, and the responder must either accept the offer—terminating the
game with the agreed-upon allocation—or reject it, in which case roles reverse in the next round.
Each round is discounted by some factor δ ∈ (0, 1), incentivizing early agreement to maximize the
reward achieved by both parties. If no agreement is reached within the finite horizon of some T
rounds, both agents receive a default reward of zero. In our implementation, the number of bargaining
rounds is limited to 5. Agents are trained for 5000 episodes and evaluated on 500 episodes.

We analyze our MARL algorithms’ performance by comparing our experimental results to this
problem’s Subgame-Perfect Nash Equilibrium (SPNE). An SPNE is a refinement on top of the Nash
Equilibrium that ensures each player’s strategies are optimal at every single step of a sequential game.
To derive the SPNE here, we first note that when Agent A proposes some value VA, Agent B will
receive value 1− δVB should they accept the offer, assuming that the resource is normalized to 1.
Vice versa, when Agent B proposes some value VB , Agent A will receive value 1 − δVA should
they accept the offer. It is intuitive to see that the optimal equilibrium strategy is to make the other
agent indifferent between accepting and rejecting the offer. Solving this system of equations yields
us V1 = V2 = 1−δ

1−δ2 = 1
1+δ . Because the proposer is not affected by the discount factor and that

the responder will bear the discount factor δ should they re-propose in the next iteration, the SPNE
is for the proposer to propose a share of 1

1+δ for themselves and a share of δ
1+δ for the responder

[Rubinstein and Wolinsky, 1985].

3

Note that in these experiments, Gumbel-Softmax discretization is applied in the MADDPG imple-
mentation, as DDPG requires a continuous action space to have a differentiable loss landscape.

3.1.1 Performance vs. Action-space size

We first evaluate the performance of the four multi-agent RL algorithms across varying grid sizes
in the action space, where each grid size controls the resolution of possible offers in the sequential
bargaining environment. For example, a resolution of 10 allows the agents to make offers only at
intervals of 0.1. The results are shown in Figure 1. Note that the standard deviations are obtained
across 5 training-execution runs for each method and grid size combination.

First, we notice the Centralized DQN (CDQN) achieves very stable performance for all action space
sizes. This is intuitive as CDQN operates on the global state and joint action space, providing each
agent with complete information on the other agent’s actions and intents. The complete observability
significantly reduces learning variance and allows for coordination across all steps of the execution
process.

In contrast, the Independent DQN (IDQN) performs poorly and exhibits very high variance across
all grid sizes. This supports our earlier analysis that IDQN suffers from non-stationarity due to
independent learning in a multi-agent setting. As the grid size increases, the resulting larger action
space further amplifies the instability, since agents lack the coordination needed to navigate a finer-
grained negotiation space.

MAPPO demonstrates more stable learning than IDQN, but still experiences substantial variations
across all grid sizes. The performance hovers around, but does not converge to the theoretical
optimum, suggesting a tendency toward some mixture across both agents’ valuations. In the sequential
bargaining environment, a sharp, low-variance policy is highly desirable, as the proposer should
make threshold-level offers that are just barely acceptable to the responder. When stochasticity is
involved in the policies, the resulting small deviations can often trigger new rounds of negotiations
and therefore a discounted pie, and thereby lead to inefficient proposals and unstable convergence.

Last but not least, MADDPG exhibits the strongest performance in tracking the theoretical optimum.
This is likely because the deterministic actor enables low-variance decisions during execution,
allowing for both agents to learn policies that optimally converge to the SPNE optimum, in contrast
to MAPPO’s stochastic policies. Another observation is that variance decreases as the grid size
increases. This is further indication of MADDPG’s ability to consistently "lock on" to the optimal
offer, as the increasing grid size allows for a more precise deterministic policy to optimally partition
the pie.

Figure 1: Average Share vs. Grid Sizes Comparison by method (CDQN, IDQN, MAPPO, MADDPG)

3.1.2 Convergence Dynamics

We next analyze the convergence dynamics of each algorithms over training in our sequential
bargaining environment. The results are shown in Figure 5. Note that because SPNE favors the
proposer, an effective algorithm should converge to a policy where agent A (proposer of the first
iteration) obtains a larger share of the pie, and agent B obtains a smaller share.

4

CDQN demonstrates clear convergence after approximately 2000 training episodes, stabilizing at a
point where Agent A obtains a consistently high reward while Agent B receives significantly less.
This indicates that Agent A reliably learns to exploit its advantage as the proposer, which is enabled
by CDQN’s access to the full global state and joint action space during training.

In contrast, IDQN exhibits highly unstable learning dynamics. Agent A’s running average reward
fluctuates significantly throughout training before ultimately collapsing to below 0.1. This suggests
that IDQN fails to learn an equilibrium-consistent strategy, which aligns with expectations given the
method’s inability to model other agents in a non-stationary multi-agent environment. The resulting
lack of coordination leads to high variance and consistently suboptimal outcomes.

MAPPO exhibits more stable and gradual convergence compared to IDQN, but still falls short of
learning the equilibrium strategy. Agent A’s average reward remains low, indicating that it fails
to fully leverage its strategic advantage as the proposer. This supports our earlier analysis that the
stochastic structure of MAPPO’s policy produces blurred strategic behavior, generating suboptimal
or inconsistent offers, and leading to compromised results in an environment that rewards precise and
deterministic proposals.

Lastly, MADDPG displays the strongest performance in terms of both convergence speed and
equilibrium fidelity. It stabilizes in fewer than 200 episodes and consistently achieves a high reward
for Agent A, on par with CDQN. This suggests that MADDPG’s centralized critic and Gumbel-
Softmax-based discrete policy allow Agent A to effectively learn sharp offer thresholds, enabling it
to exploit its proposer role in a manner consistent with SPNE behavior.

Figure 2: Convergence Dynamics by method.

3.2 Environment 2: Creating and Experimenting with a Monopoly Deal Environment

3.2.1 Objectives

Our primary objective was to design and implement a fully functional Agent-Environment Cycle
(AEC) environment tailored to the mechanics of Monopoly Deal. Constructing an AEC environment
is a foundational step in multi-agent reinforcement learning (MARL), as it provides the necessary
framework for sequential, interleaved decision-making among multiple agents. By building our
own environment, we gain complete control over the dynamics, game rules, and observation/action
interfaces, allowing for custom experimentation and benchmarking. Our two main goals were to:

1. Create a working Monopoly Deal environment for future MARL work.

2. Produce an agent that performs better than random action selection.

3.2.2 Game Summary

Monopoly Deal is a strategic, turn-based card game derived from the traditional Monopoly board
game, reformulated to operate exclusively through a deck of specialized cards. The primary objective
is for a player to assemble three complete sets of property cards, each set corresponding to a unique

5

color group. Gameplay consists of drawing cards and executing up to three actions per turn, with
possible actions including the placement of property or money cards, as well as the use of action
cards to influence the game state. Action cards enable players to perform a range of interactions such
as charging rent, stealing property, demanding payments, or countering opponents’ moves. All the
rules can be found here.

3.2.3 Building the Environment and Game Setup

The Monopoly Deal environment was built using the Petting Zoo API. This was done in order to
leverage the support of the Petting Zoo community as well as to open the door for this environment
to be used by others in the future using a standard API.

The observation space in the Monopoly Deal environment is a flattened, fixed-length vector that
compactly encodes the agent’s current game state. It includes the agent’s hand (with up to 12 cards),
the total money in their bank, and the occupancy count of each of their 10 property slots. Additionally,
the observation captures how many cards are in each property slot of the two other players (for a
3-player game), along with their respective bank totals. The agent’s own completed property sets
are also counted as a single scalar. This representation allows a learning agent to infer relative
game progress, opponent threat levels, and strategic opportunities from a compact feature vector. A
previous iteration of the observation space included the individual cards in each player’s bank and
property slots. Experimentation yielded similar results between the simplified observation space and
the previous iteration, so we went with the simpler one. The observation space is show in Table 2.

The action space, in contrast, is large and sparse, consisting of 611 discrete indices that encode
every possible legal action the agent can take, including banking cards, playing rent or action cards,
performing targeted moves like "Deal Breaker" or "Forced Deal", and meta-actions like discarding or
passing. To manage this complexity and prevent the agent from selecting invalid or illegal actions, an
action masking mechanism is employed.

At each decision step, a binary mask of length 611 is generated, where each element corresponds to
an action index. The action represent by each index is shown in Table 1. A value of 1 indicates that
the action is valid in the current state, while a 0 masks out illegal options. This mask is integrated
into the learning process to ensure the agent only considers valid moves during action selection and
gradient updates. Not only does this improve sample efficiency and convergence speed, but it also
dramatically reduces the likelihood of wasted transitions due to invalid actions. Descriptions of both
spaces are in the appendix.

The reward function did not remain static throughout experimentation. Depending on the results
of experimentation, rewards for different actions were added or removed. We introduced a set of
shaped rewards tied to specific in-game actions. These reward signals were designed to reinforce
desirable behaviors—such as placing properties, completing sets, and ultimately winning, while also
penalizing inefficient or stalled actions like discarding or hoarding cards. These rewards could be
turned on/off using a shape option in the environment.

3.2.4 Training a DQN to Beat Random Agents

First, the DQN was trained with a reward of +10 for a win and -10 for a loss, with no intermediate
actions receiving rewards. This sparse reward setting was intended to incentivize long-term planning
rather than short-sighted strategies. While the agent’s average reward per 5000 steps improved over
time, the win rate consistently declined after an initial spike. This suggests that the agent learned to
exploit aspects of the game that increased its expected reward without necessarily learning how to
win.

To try and improve our model, the DQN was trained with shaped rewards. Shaped rewards are
intermediate rewards provided throughout the episode to encourage useful behavior and accelerate
learning, rather than only rewarding the agent at the end of the game for winning. These rewards were
given for actions such as placing properties or completing a full set. Over the course of training, the
agent’s average reward steadily increased, indicating that it was learning to exploit the shaped reward
structure effectively. However, despite this improvement in average reward, the agent’s win rate did
not show a corresponding increase. This suggests that the agent learned to maximize short-term
gains encouraged by the shaped rewards, but failed to develop long-term strategies that would lead to
actually winning the game.

6

https://monopolydealrules.com/index.php?page=cards
https://pettingzoo.farama.org/index.html

3.2.5 Application of MAPPO on Monopoly Deal

Our next attempt at creating a good agent in Monopoly Deal was through Multi-Agent Proximal
Policy Optimization (MAPPO). While the average loss per 100 updates remained stable, fluctuating
between 3,250 and 4,750, the average reward per 5,000 steps across all three agents showed high
variance, typically remaining between -4 and -1. This suggests that although agents were learning to
optimize local reward signals, they were not converging to consistent high-reward strategies. Win rate
evaluation against random opponents every 500 episodes further reinforced this, as agents achieved
moderate success, with win rates fluctuating between 0.25 and 0.42, but without clear upward trends.
These results highlight the difficulty of training stable and generalizable MAPPO agents under noisy
reward signals and emphasize the need for more targeted reward shaping or opponent diversity to
improve learning outcomes.

3.2.6 General Strategies for Improvement

The poor results of our models prompted us to try several techniques to push the performance of the
models passed the random-selection agents. One technique was to train at en epsilon of 1 for a third
of the episodes. The motivation behind this was to let the agent explore rare actions (such as using
a Deal Breaker card, of which there are only 2 in the entire deck). Furthermore, the "bank" action
removes a card from play for the entire game, so we ran the exploratory phase with the ability to bank
cards turned off. Unfortunately, neither attempt yielded significant performance improvements.

3.2.7 Further Work

There are directions we will take to improve agent performance and stability in the Monopoly
Deal environment. One avenue is to reduce stochasticity during training by fixing the initial game
state—specifically, by training agents from the same starting hand in each episode. This would allow
for more consistent learning signals and help isolate the effects of strategic decision-making.

Furthermore, the action space is large, and some cards (like Deal Breakers) appear extremely
infrequently, making it hard to explore the Q values of using those cards. Work has been done to
address these sparse actions that can be applied to this environment [Pang et al., 2021]. Reward
shaping also turned out to be extremely difficult, as evident by the fact that higher shaped rewards did
not translate to higher win rates, but methods exist to avoid shaping rewards manually as well [Hu
et al., 2020].

Finally, we hope to apply algorithms used in other card games to Monopoly Deal, as the game may
not be a suitable environment for our chosen algorithms. For example, the Pluribus program has
achieved state of the art performance in Poker, and may be able to be applied to Monopoly Deal
[Brown and Sandholm, 2019].

4 Conclusion

In this project, we explored a variety of multi-agent reinforcement learning methods, evaluating their
stability, convergence, and performance in both controlled (Sequential Bargaining) and complex
(Monopoly Deal) environments. While centralized and deterministic approaches like MADDPG
excelled in low-variance settings with clear objectives, more expressive policy gradient methods like
MAPPO struggled in environments with noisy rewards and high action sparsity. Our work highlights
the importance of environment design, reward structure, and agent coordination in MARL. Future
work will explore better initialization, action space pruning, and reward shaping strategies to improve
sample efficiency and policy generalization in large, stochastic games.

7

References
Christopher Amato. An introduction to centralized training for decentralized execution in cooperative

multi-agent reinforcement learning, 2024. URL https://arxiv.org/abs/2409.03052.

Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. Science, 365(6456):
885–890, 2019. doi: 10.1126/science.aay2400. URL https://www.science.org/doi/10.
1126/science.aay2400.

Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao, Feng Wu, and
Changjie Fan. Learning to utilize shaping rewards: A new approach of reward shaping, 2020. URL
https://arxiv.org/abs/2011.02669. Accepted by NeurIPS 2020.

Ken Ming Lee, Sriram Ganapathi Subramanian, and Mark Crowley. Investigation of independent
reinforcement learning algorithms in multi-agent environments, 2021. URL https://arxiv.
org/abs/2111.01100.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments, 2020. URL https://arxiv.org/abs/
1706.02275.

Jing-Cheng Pang, Tian Xu, Shengyi Jiang, Yu-Ren Liu, and Yang Yu. Reinforcement learning
with sparse–executing actions via sparsity regularization, 2021. URL https://arxiv.org/abs/
2105.08666. Version 4, last revised 22 Jul 2024.

Ariel Rubinstein. Perfect equilibrium in a bargaining model. Econometrica, 50(1):97–109, 1982.
ISSN 00129682, 14680262. URL http://www.jstor.org/stable/1912531.

Ariel Rubinstein and Asher Wolinsky. Equilibrium in a market with sequential bargaining. Econo-
metrica, 53(5):1133–1150, 1985. ISSN 00129682, 14680262. URL http://www.jstor.org/
stable/1911015.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.html.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative, multi-agent games, 2022. URL https://arxiv.
org/abs/2103.01955.

8

https://arxiv.org/abs/2409.03052
https://www.science.org/doi/10.1126/science.aay2400
https://www.science.org/doi/10.1126/science.aay2400
https://arxiv.org/abs/2011.02669
https://arxiv.org/abs/2111.01100
https://arxiv.org/abs/2111.01100
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/1706.02275
https://arxiv.org/abs/2105.08666
https://arxiv.org/abs/2105.08666
http://www.jstor.org/stable/1912531
http://www.jstor.org/stable/1911015
http://www.jstor.org/stable/1911015
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/2103.01955
https://arxiv.org/abs/2103.01955

Appendix

Additional Figures

Action Type Start Index End Index Size
bank_card 0 66 67
deal_breaker 67 86 20
just_say_no 87 87 1
pass_go 88 88 1
sly_deal 89 108 20
forced_deal 109 308 200
debt_collector 309 311 3
birthday 312 312 1
rent 313 332 20
place_property 333 342 10
place_wildcard 343 352 10
flip_wildcard 353 362 10
place_wildcard_all 363 372 10
move_wildcard_all 373 472 100
place_house 473 482 10
place_hotel 483 492 10
pay_sum_from_property 493 502 10
accept_action 503 503 1
discard_card 504 609 106
do_nothing 610 610 1

Table 1: Flattened action space layout for Monopoly Deal with 3 players

Component Start Index End Index Size Description
Hand 0 11 12 Card IDs in the agent’s hand
Bank 12 12 1 Sum of money in the agent’s bank
Properties 13 22 10 Number of cards in each of the agent’s 10 property

slots
Completed Sets 23 23 1 Number of complete property sets the agent owns
Other Properties 24 43 20 Number of cards in each of the 10 property slots

of 2 opponents
Other Banks 44 45 2 Sum of money in each of the 2 opponent banks

Table 2: Flattened observation space layout for Monopoly Deal (3-player game)

Figure 3: Win rate and rewards for initial environment. Note: Since there were 3 players, the
benchmark was a 33% win rate.

9

Figure 4: Win rate and rewards for DQN shaped rewards environment.

Figure 5: Win rate and rewards for MAPPO.

Work Distribution

Athith: Environment creation, all experiments and analysis for the Monopoly Deal Environment

Mike: Writing of the methods section. Environment creation, all experiments and analysis for the
Sequantial Bargaining Environment

10

	Introduction
	Problem Formulation

	Related Work and Methods
	Independent Agents
	Centralized Agent
	Centralized Training, Decentralized Execution (CTDE)
	Multiagent Deep Deterministic Policy Gradient (MADDPG)
	Multiagent Proximal Policy Optimization (MAPPO)

	Experiments and Discussion
	Environment 1: 2-Player Sequential Bargaining Environment
	Performance vs. Action-space size
	Convergence Dynamics

	Environment 2: Creating and Experimenting with a Monopoly Deal Environment
	Objectives
	Game Summary
	Building the Environment and Game Setup
	Training a DQN to Beat Random Agents
	Application of MAPPO on Monopoly Deal
	General Strategies for Improvement
	Further Work

	Conclusion

