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Abstract

We study a monopolist’s pricing problem for multiple substitutable products, aiming to maximize

expected revenue. We present different loss functions using transaction data to prescribe prices, includ-

ing the MNL likelihood loss, combined-revenue-likelihood loss, generalized hinge loss from [1], and the

direction loss.

We then establish a revenue lower bound for a pricing policy using the direction loss without relying

on specific choice models. Numerical experiments show that our method outperforms the standard

estimate-then-optimize approach using the MNL likelihood and the model-free method in [2] across

various settings.

1 Introduction

In an increasingly data-driven economy, firms’ ability to leverage transaction data and develop effective

pricing models can offer significant profitability and competitive advantages. In many cases, firms may offer

products that are substitutable, each catering to a specific segmented group of customers, making it necessary

to incorporate cross-product interactions such as cannibalization and demand spillover. These interactions

complicate the pricing decision as the optimal price for one product can affect the optimal price for another.

By modeling for these factors, firms can price product that maximize revenue and better understand their

targeted customers

One widely-used approach for contextual pricing is Estimate-then-Optimize. Within this paradigm,

a discrete choice model is used to characterize customer valuation of a given product through measures

such as utility estimation and price sensitivity. This is achieved by closely aligning the model’s estimate

the probability of a customer purchasing the product at a specific price, with observed patterns in historical

transaction data. Subsequently, a pricing policy can be obtained by optimizing to maximize revenue under the

predicted choice probabilities. However, there are several potential issues that can arise. Firstly, the selected

choice model may fail to adequately capture the patterns present in historical transaction data, leading to

poor predictive performance and by extension suboptimal pricing policies. This is commonly referred to

as model misspecification. Secondly, an overly complex choice model may introduce non-convexities during

the downstream revenue optimization problem, increasing the likelihood of the optimization process being

trapped in local minima and failing to identify the true optimum.

Other approaches [1] [2] do not rely on parametric models that describe customer behaviors. Rather,

they use observed transaction data to directly optimize a surrogate loss function to approximate the revenue-

maximizing objective. Also known as “model-free” approaches, they are more robust to misspecification as

they do not rely on assumptions about the structure of the demand or the customers’ behavior.

In this project, we propose a combined Estimate-then-Optimize MNL Loss, hinge loss, and a direction

Loss. Empirically, our methods manage to outperform existing baselines in both well-specified and misspec-

ified cases. We also provide theoretical guarantees for the direction loss function.

1



2 Model

Consider a monopolist facing a pricing problem for multiple substitutable products with the objective of

maximizing expected revenue. The seller offers n products, represented by the set [n] = {1, 2, . . . , n}. We

let 0 denote the “no-purchase” option. The seller needs to determine the price vector p = (p1, . . . , pn) ∈ Rn
+.

Given the price vector p, customers choose product j ∈ [n] ∪ {0} with probability qj(p). However, the true

choice probabilities are unknown to the seller. Instead, the seller has access to T historical transaction data

points. Each transaction entry includes a historical price vector pt ∈ Rn
+ and the corresponding customer

decision yt ∈ [n] ∪ {0} , indicating which product was purchased.

Our goal is to leverage the transaction data to prescribe an effective pricing policy that maximized the

expected revenue. In the following subsections, we explore and propose various data-driven methods to

design high-performance pricing policies.

2.1 Estimate-then-Optimize MNL Loss

A standard approach to solving the data-driven multi-product pricing problem is known as Estimate-

Then-Optimize (ETO). In this method, we assume that the ground truth follows a specific choice model and

use the Maximum Likelihood Estimation (MLE) method to estimate customer choice behavior. Then, we

solve the corresponding price optimization problem based on the estimated choice model.

For instance, we can consider that customers’ choice can be represented by a classical Multinomial Logit

(MNL) model with linear utilities. Given price vector p, the choice probability of choosing product i ∈ [n] is

given by

qi(p) =
eαi−βpi

1 +
∑n

j=1 e
αj−βpj

,

where β represents the price sensitivity and αj takes into account all feature values excluding the price. An

important property of the MNL model is that the optimal prices are uniform and can be captured using the

Lambert W function.

Proposition 1. For the MNL model, uniform pricing is optimal. Let p∗ denote the optimal prices and

R(p∗) denote the optimal revenue under pricing policy p∗. Then, it holds that

R(p∗) =
W (
∑n

j=1 e
αj−1)

β
, p∗i =

1 +W (
∑n

j=1 e
αj−1)

β
,

where W (·) is the Lamert W function.

Under the ETO framework, we begin by applying MLE to fit the transaction data. This involves opti-

mizing the following objective function to determine the best α and β that align with the historical data.

max
α,β

LMLE(α, β) =
1

T

T∑
t=0

(
Iy(t) ̸=0 · log

e
α

y(t)−βp
ty(t)

1 +
∑n

j=1 e
αj−βptj

+ Iy(t)=0 · log
1

1 +
∑n

j=1 e
αj−βptj

)
.

Let α̂ and β̂ denote the optimal solution of the above problem. Then, for i ∈ [n], our proposed price is

pi =
1+W (

∑n
j=1 eα̂j−1)

β̂
.

2.2 Combined Estimation and Decision Loss

As an alternative to the ETO method, we may consider the revenue maximization objective directly. This

is akin to minimizing the decision error induced by an estimation rather than the estimation error. Specif-

ically, we consider the MNL Model again, whose closed-form expressions for optimal revenue R(p∗) given
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utility and price sentivity parameters α and β may be used as the revenue-maximizing decision objective:

max
α,β

R(α, β) :=
W (
∑n

j=1 e
αj−1)

β

However, optimizing for maximum revenue directly may lead to the selection of an arbitrarily large α or a

very small β. Therefore, it is necessary to introduce additional penalty terms on α and β. Furthermore,

revenue optimization does not take into account customer decisions from historical data, which are important

in establishing the relative utilities of different products. Therefore, we formulate a combined estimation and

decision loss that encourage both alignment with transaction data and revenue maximization, along with

penalization terms for the parameters.

max
α,β

Lcombined(α, β) := c · R(α, β) + (1− c)LMLE − λα

( n∑
j=1

α2
j

)
+ λβ log β

Note that c is a tunable parameter that determines the weight of revenue and MLE in the loss function.

Let α̂ and β̂ denote the optimal solution of the above problem. Then, for i ∈ [n], our proposed price is

pi =
1+W (

∑n
j=1 eα̂j−1)

β̂
.

2.3 Hinge Loss Function

[1] introduce a hinge loss function that does not rely on specific assumptions about the customer’s

underlying purchase model. The paper shows that minimizing the hinge loss function can lead to an effective

pricing policy for selling a single product. Inspired by this idea, we generalize this loss function to the multi-

product case. Let π ∈ Rn
+ denote the suggested price vector. For historical price vector P and customer

decision Y , our proposed hinge loss function is defined as:

Lh
c (π, Y, P ) =

1

ϕ(P )
·

{∑n
i=1(πi − Pi)

+, Y = 0

c(PY − πY )
+ + (1− c) ·

∑n
i=1(πi − Pi)

+, Y ∈ N,

where ϕ(P ) denotes the density function of the historical pricing policy, and c is a parameter chosen by the

seller. The intuition behind this loss function is straightforward: (i) When a customer selects the no-purchase

option, the loss function encourages the reduction of prices for all products as the offered prices likely exceed

the customer’s valuations. (ii) When item i is sold, the loss function encourages lowering the prices of unsold

items and increasing the price of the sold item. Given the proposed hinge loss function, the prescribed price

vector is obtained by solving the optimization problem below:

min
π

1

T

T∑
t=1

Lh
c (π, Yt, Pt).

2.4 Direction Loss Function

The direction loss function, inspired by [3], reformulates the multi-product pricing problem as a one-

dimensional search problem. This policy begins with a fixed vector of prices f ∈ Rn
+, referred to as the

“direction.” These prices are then rescaled by a one-dimensional decision variable πf to determine an optimal

scaling factor. The loss function, defined for arbitrary historical transaction data, takes a form similar to

the hinge loss:

Ld
c(π

f , Y, P ) =
1

ϕ(P )
·

{∑n
i=n(π

f · fi − Pi)
+, Y = 0

c(PY − πf · fi)+ + (1− c) ·
∑n

i=1(π
f · fi − Pi)

+, Y ∈ N,
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where ϕ(P ) represents the density function of the historical pricing policy, and c is a parameter chosen by

the seller. In essence, instead of optimizing over an n-dimensional price vector, the optimization occurs over

a scalar πf . Similar to the hinge loss function, it penalizes prices that are below the listed prices when one

item was sold and penalizes prices that are above the listed prices when no items are sold. Based on the

direction loss function, the prescribed price vector is obtained by solving the following optimization problem:

min
πf

1

T

T∑
t=1

Ld
c(π

f , Yt, Pt). (1)

An important remaining question is how to select appropriate directions. In the next section, we show

that when the direction is set to the unit vector, i.e., f = (1, . . . , 1), the prices derived from the above

minimization problem can provide a meaningful revenue guarantee under mild assumptions. In addition,

in the numerical experiments, we consider two directions: the unit vector and the average historical price

vector.

3 Performance Guarantee for Direction Loss Function

In this section, we establish the performance guarantee for our proposed direction loss function. We

consider that customer has independent random valuations Vi for i ∈ [n] and selects the one with the highest

non-negative utility, defined as Vi − pi.

Our approach leverages results from [1] and [3] to establish a reasonable lower bound on revenue without

imposing model-specific assumptions on the choice model. Using the analysis in [3], we bound the revenue

gap between the optimal non-uniform pricing policy and the optimal uniform pricing policy. Building on

this, we apply the results from [1] to demonstrate that transaction data can reveal useful information about

the aggregate valuation function. This insight enables us to set a price that guarantees the uniform pricing

policy’s performance from the direction loss is lower bounded relative to the optimal uniform pricing policy.

We first impose several standard assumptions in [1] and [3].

Assumption 1 (Weak-Rationality). Choice probabilities qi(p), i ∈ [n] satisfy the substitutable property:

(a) For all k ̸= i, qi(p) is increasing in pk for k ̸= i.

(b)
∑n

i=1 qi(p) is decreasing in pk for all k ∈ [n].

Assumption 2 (Positive and Finite Optimal Price). We assume that ∞ > p∗i > 0 for all i ∈ [n].

Assumption 3 (Log-Concavity). The complementary CDF of the valuation F̄Vi
(v) = P(Vi > v) is log-

concave, i.e., for all x, y ∈ domFVi and 0 < θ < 1, it satisfies

F̄Vi(θx+ (1− θ)y) ≥ F̄Vi(x)
θF̄Vi(y)

(1−θ), ∀i ∈ [n].

Let R∗ denote the optimal revenue. We also denote ph as the minimizer of (1) when the direction f is

the unit vector. Then, the corresponding revenue is denoted as Rf (ph). Under the above assumptions, we

have the performance guarantee for our direction loss function. The proof can be found in the Appendix.

Theorem 1. Suppose assumptions 1, 2, and 3 hold. Moreover, suppose that the optimal price is bounded

by pmin ≤ p∗i ≤ pmax. Then, we can choose c∗ = 0.8234 to obtain a price ph derived from the direction loss,

and the revenue is guaranteed, relative to the non-uniform optimal pricing policy:

Rf (ph)

R∗ ≥ 0.7715

(1 + ln(pmax/pmin))
.

4



4 Numerical Experiments

In this section, we conduct numerical experiments to evaluate the performance of different pricing policies

proposed in section 2. We consider two synthetic settings where the underlying choice models are governed

by the MNL model (Section 4.1) and the Markov Chain choice model (Section 4.2). The second setting

is used to evaluate the performance of our MNL-based approaches (Sections 2.1 and 2.2) when the true

underlying structure is misspecified.

4.1 Numerical performance on MNL choice model

We start with the case where the ground truth model follows the MNL model. The data generation

process follows the approach outlined in [2], allowing us to compare the proposed pricing policies with the

benchmark policy studied in that work. Specifically, we generate synthetic instances with n = 10 products

and varying number of data points T ∈ [20, 60, . . . , 300].Under the MNL model, the probability of choosing

product j ∈ [n] when facing prices (pt1, . . . , ptn) is given by

exp(αj − βptj)

1 +
∑n

i=1 exp(αi − βpti)
.

We consider β = 0.5. Two parameter configurations are considered: (i) High-utility experiments: The pa-

rameters {αj}1j=10 are independently drawn from the uniform distribution over [1, 3] and the historical prices

are sampled uniformly from [5.5, 8.5]. (ii) Low-utility experiments: The parameters {αj}1j=10 are indepen-

dently drawn from the uniform distribution over [−2, 0] and the historical prices are sampled uniformly from

[2.5, 4.5]. For each value of T , we simulate 60 independent instances and report the average revenue ratios

of all methods compared to the optimal revenue, as shown in Figure 1 and 2.

From the figures, we observe that when the dataset size is small, the MLE method struggles because it is

impossible to get a good estimation of 11 variables with only 20 data points. However, both the combined

method and direction loss method achieve near-optimal revenues. This is reasonable because the combined

method prescribes moderate prices, which are effective in this setting. Additionally, since uniform pricing

is optimal for the MNL model, the direction-loss method performs near-optimally, as the unit vector is one

of the suggested directions. Moreover, our proposed hinge loss function demonstrates better or equivalent

performance compared to the model-free method studied in [2]. Finally, as the number of data points

increases, the performance of the MLE method improves significantly.

Figure 1: Model performance under high-utility MNL

model.

Figure 2: Model performance under low-utility MNL

model.
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4.2 Numerical performance on misspecified choice model (Markov Chain choice

model)

We then consider the case where the ground truth model follows the Markov Chain choice model.

Specifically, we generate synthetic instances with n = 10 products and varying number of data points

T ∈ [40, 80, . . . , 320]. We evaluate performance in two settings: (i) High-price experiments: The historical

prices are samples uniformly from [6.5,10.5]. (ii) Low-price experiments: The historical prices are samples

uniformly from [2,5]. For each value of T , we simulate 60 independent instances and report the average

expected revenues of the proposed pricing policies, as shown in Figure 3 and 4.

For the high-price setting, both the combined method and the direction-loss method consistently achieve

relatively high expected revenues across different dataset sizes. Additionally, the MLE method outperforms

the hinge-loss method in this context. A plausible explanation for the strong performance of these three

methods is their tendency to prescribe moderate prices, which are more effective in the high-price setting. In

contrast, for the low-price setting, the MLE method shows the weakest performance among all methods, as

expected, given that the ground truth model does not follow the MNL structure. Meanwhile, the combined

method and the direction-loss method continue to exhibit strong performance. Finally, all proposed pricing

policies consistently outperform the model-free method from [2], highlighting the robustness and effectiveness

of our approaches even when the underlying model is misspecified.

Figure 3: Model performance under high-price Markov

Chain Choice Model.

Figure 4: Model performance under low-price Markov

Chain Choice Model.

5 Conclusion and Future Work

We consider various loss functions for multi-product pricing problems. Initially, we adopt a direct ETO

approach by imposing a MNL structure on the transaction data. We estimate price sensitivity and subse-

quently determine the optimal price. Next, we explore the combine-revenue-likelihood loss, which accounts

for the potential revenue from the proposed price. Intuitively, this approach not only seeks to maximize the

likelihood of the parameters but also looks for a price vector that yields high revenue. We then extend the

hinge loss proposed in [1] to multi-product setting. A simpler version of this is the direction loss, where

we have a base price vector and rescale the prices of all products simultaneously. Under mild assumptions,

we can guarantee the revenue from the direction-loss pricing policy. We perform numerical experiments to

verify the near-optimal performance of our proposed policies.

For future work, we plan to explicitly find or bound pmin and pmax as shown in the theoretical results.

We hypothesize that if the value distributions Vi and Vj are very close (with respect to some divergence

measure) and are independent, the gap between qmin and qmax may be small.
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Appendix

Proof of Proposition 1

The mean utility of a product is given by ui = αi − βpi. As stated previously, the expected revenue

under the MNL choice model is defined as

R(p) =

n∑
i=1

piqi(p) =

n∑
i=1

pi
eαi−βpi

1 +
∑n

j=1 e
αj−βpj

For clarity, Let Ai = eαi−βpi , and B = 1+
∑n

j=1 e
αj−βpj . Taking the derivative of the revenue with respect

to prices, we obtain
∂R
∂pi

=
Ai

B
+ pi

(
− βAi

B
+

βA2
i

B2

)
+
∑
j ̸=i

pj
βAjAi

B2

Setting derivative equal to zero, and assuming uniform pricing p = pi = pj , and noting that
∑

j Aj = B− 1,

we have

BAi + pβ
(
−BAi +A2

i

)
+
∑
j ̸=i

pβAjAi = 0

B − pβB + pβ(B − 1) = 0

pβ = B = 1 +

n∑
j=1

eαj−βp

This expression may be aranged as a Lambert W function with some more algebraic manipulations and the

result follows:

pβ − 1 = e−(βp−1)
n∑

j=1

eαj−1

(pβ − 1)e(pβ−1) =

n∑
j=1

eαj−1

pβ − 1 = W (

n∑
j=1

eαj−1)

p =
1 +W (

∑n
j=1 e

αj−1)

β
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Proof of Theorem 1

Proof. Under Assumptions 1 and 2, we obtain the following result, proven in [3]:

Proposition 2. Suppose that assumption 1 and assumption 2 hold. We also assume that pmin ≤ p∗i ≤ pmax

for all i ∈ [n]. Then, we can select a uniform price f = (1, 1, . . . , 1) and obtain the following guarantee:

R∗ ≤ (1 + ln(pmax/pmin))Rf (p∗f )

where R∗ and Rf (p∗f ) are the optimal revenues using the non-uniform and uniform pricing, respectively.

Next, we lower bound the ratio Rf (ph)
Rf (p∗

f )
for uniform direction f = (1, . . . , 1). To simplify the analysis, we

further assume that our historical transaction data is generated using a directional pricing policy. Then, the

expected loss is given by:

E[Ld
c(π

f , y, p)] =

∫
p

1

ϕ(p)

[
(1− cPr(y ̸= 0|p))

(
πf − p

)+
+ cPr(y ̸= 0|p)

(
p− πf

)+]
ϕ(p)dp.

Following the argument in [1], we obtain that the minimizer ph satisfy:

ph = c

∫ ∞

0

Pr(y ̸= 0|p)dp = c

∫ ∞

0

Pr (Vi ≥ pfi for some i) dp = c

∫ ∞

0

Pr(W ≥ p)dp = cE[W ],

where W = max{V1, . . . , Vn}.
In [1], the assumption of log-concavity on the valuation distribution is used to derive the revenue guaran-

tee. We adopt this log-concavity assmuption and show that W , the maximum valuation among the products,

also possesses the log-concavity property:

Lemma 1 (Log-Concavity of the Maximum Valuation). Assume that Fi(x), fi(x), and f ′
i(x) exist for

all x ∈ [0,∞) and i ∈ [n]. Suppose further that F̄i(x) is log-concave, and the random valuations Vi are

independent. Then, the complementary CDF of W = max{V1, . . . , Vn} is also log-concave.

Proof. See the next section.

With uniform pricing, we can treat W as a random valuation of a single product. Therefore, from [1], we

can choose c∗ = 0.8234 such that the revenue ratio is lower bounded when using the directional loss price

ph, i.e.,
Rf (ph)

Rf (p∗f )
≥ 0.7715

where p∗f is the optimal uniform price. Specifically, note that the revenue from using a ph-uniform pricing

policy is

Rf (ph) = phP (max{V1, V2, . . . , Vn} ≥ ph) = phP (W ≥ ph)

From [1], if W is a log-concave valuation distribution and ph = cE [W ], then

Rf (ph)

Rf (p∗f )
=

phP (W ≥ ph)

supp>0 pP (W ≥ p)
≥ min

{
min

z≤−2c

cze−z( 1
c−1)−1

z + c
, min
0<z<1

c(z − 1)ec(z−1)

z ln(z)

}

where the denominator term is the revenue from the optimal uniform pricing policy. We choose c = 0.8234

so that the ratio is lower bounded by 0.7715.

From the results above, the ratio between the uniform direction-loss price and the optimal uniform pricing

policy is lower bounded by 0.7715. Moreover, the ratio between the optimal uniform pricing policy and the

optimal non-uniform pricing policy is lower bounded by 1/ (1 + ln(pmax/pmin)). Combining these two results

yields the proposed bound.
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Proof of Lemma 1

Proof. For simplicity, we assume that Fi(x) < 1 for all x ∈ R and i ∈ [n].

Since all the valuation are independent, we thus have that

G(x) = P (W ≤ x) = P (maxV1, . . . , Vn ≤ x) = P (V1 ≤ x) . . . ,P (Vn ≤ x) =

n∏
i=1

Fi(x).

Since F̄i is log-concave, we know that

F̄i
′′
=

∂2

∂x2
log (1− Fi(x)) =

−f ′
i(x)(1− Fi(x)) + f2

i (x)

(1− Fi(x))
2 ≤ 0.

Then, we consider each x ∈ R+ and omit x as an input of functions. That is, from the above log-concavity

result, we can write it as

f ′
i (1− Fi) ≥ f2

i

for all i ∈ [n].

We then note that

Ḡ′′ =
∂2

∂x2
log

(
1−

n∏
i=1

Fi

)

=
−
(∑n

j=1 F1 . . . Fj−1f
′
jFj+1 . . . Fn + 2

(∑
1≤j<k≤n F1 . . . Fj−1fjFj+1 . . . Fk−1fkFK+1 . . . Fn

))
(1−

∏n
i=1 Fi)

(1−
∏n

i=1 Fi)
2

+

(∑n
j=1 F1 . . . Fj−1fjFj+1 . . . Fn

)2
(1−

∏n
i=1 Fi)

2 .

We note that Fi, fi ≥ 0, and W is log-concave if n∑
j=1

F1 . . . Fj−1f
′
jFj+1 . . . Fn

(1− n∏
i=1

Fi

)
≥

 n∑
j=1

F1 . . . Fj−1fjFj+1 . . . Fn

2

We can rewrite each term in the LHS as follows:

F1 . . . Fj−1f
′
jFj+1 . . . Fn

(
1−

n∏
i=1

Fi

)
= F1 . . . Fj−1f

′
jFj+1 . . . Fn (1− Fj + Fj (1− F1) + FjF1 (1− F2) + . . .+ F1 . . . Fj (1− Fj+1) + F1 . . . Fn−1 (1− Fn))

≥ F1 . . . Fj−1f
2
j Fj+1 . . . Fn + f2

j

∑
k ̸=j

(
n∏

i=1

Fi

) k−1∏
i=1;i ̸=j

Fi

 1− Fk

1− Fj

Since Fi < 1, we thus have that

F1 . . . Fj−1f
′
jFj+1 . . . Fn

(
1−

n∏
i=1

Fi

)
≥ F1 . . . Fj−1f

2
j Fj+1 . . . Fn + f2

j

∑
k ̸=j

(
n∏

i=1

Fi

)2
1− Fk

(1− Fj)FjFk

For j ̸= k, we know that

f2
j

(
n∏

i=1

Fi

)2
1− Fk

(1− Fj)Fj
+ f2

k

(
n∏

i=1

FiFk

)2
1− Fj

(1− Fk)FkFj
≥ 2

(
n∏

i=1

Fi

)2

fjfk/FjFk
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by A.M.-G.M. Therefore,

 n∑
j=1

F1 . . . Fj−1f
′
jFj+1 . . . Fn

(1− n∏
i=1

Fi

)

≥
n∑

i=1

F1 . . . Fj−1f
2
j Fj+1 . . . Fn + 2

∑
j<k

(
n∏

i=1

Fi

)2

fjfk/FjFk

=

 n∑
j=1

F1 . . . Fj−1fjFj+1 . . . Fn

2

.

Therefore, W is log-concave.
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